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The problem to solve

How to improve basis-set convergence of excited-state energies and properties?

Strategy

v Development of a hybrid wave-function/density-functional method for basis-set calculations of
energies and molecular properties, the density-based basis-set correction method:

= \We correct the slow convergence of short-range correlation effects that arises using post
Hartree-Fock methods with a functional of the density.

= The self-consistent version of this method was tested for ground-state energies and dipole
moments [1, 2].

1 Here, we present an extension of the density-based basis-set correction to a linear-response for-
malism.

General ground-state optimization

* The ground-state energy expression Is
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where E [qu(p)] aims to correct the basis error and verifies the relation E=|p] 5 one 0.

= We introduce the intermediate-normalized parametrized wave function
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where |Wg) = \\If(po)> s the current wave function and its derivatives with respect to p are orthogonal
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* The ground-state energy is defined through

E(l)g: min EB(p). (3)
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Using the Newton-Raphson iterative method, optimal parameters p" are found from
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General linear-response equations

We consider the time-dependent Hamiltonian H(t),
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Linear-response equations for configuration interaction

H(t)=H+V(t), (9)
with the periodic electric-dipole interaction of frequency w,
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To build the linear-response equation, we consider the quasi-energy
s 1 (T Ue@)| AW —ig|[Ve®) 51 71
Q% =7 — + B8 oo -
TJo | (U(P®)|(p(1) |
From Ap(t) = pTe Wt L p~etwt the optimal quasi-energy is defined through
o=  stat OF (12)
(pt,p~)eC*M
Excitation energies wf verify the linear-response equations
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and the excited-state energies are obtained by
ES = EF + WP, (15)
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The Cl wave function is expanded on a set of Slater determinants ®;:

M
U(p)) => prlep) (16)
=1

The linear-response (Eq. (13)) matrix elements are re-written as
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with the basis-set correction kernel contribution:
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Tests on the 1D model system

= 2 electrons in a 1D space in a harmonic potential with a delta electron-electron interaction:
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= FC| with a Hermite-Gaussian basis set
= A Local-Density-Approximation (LDA) to correct for incomplete basis-set [3]
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The energy per particle is expressed as a numerical fit,
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to easily compute the needed derivatives:
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Example on the first excited-state energy of the 1D system:
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= X No improvement of the basis convergence of the excitation energies.
= v/ Great improvement of the basis convergence of the excited-state energies.

Ongoing : applications on real systems

= Improvement of the approximation used for the density functional.

= Perturbatively selected configuration interaction state (CIPSI) to build a set of determinants for the
linear response equations.

= Implementation of the basis-set correction kernel contribution.
= Tests on atomic and molecular systems.

Softwares

= A Fortran home-made code for a 1D model system with Hartree-Fock, Full Cl and density-based
basis-set correction algorithms for method development.

= Quantum Package 2.0 for applications on real systems.
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