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The problem to solve

How to improve basis-set convergence of excited-state energies and properties?

Strategy

3 Development of a hybrid wave-function/density-functional method for basis-set calculations of

energies and molecular properties, the density-based basis-set correction method:

We correct the slow convergence of short-range correlation effects that arises using post

Hartree-Fock methods with a functional of the density.

The self-consistent version of this method was tested for ground-state energies and dipole

moments [1, 2].

o Here, we present an extension of the density-based basis-set correction to a linear-response for-

malism.

General ground-state optimization

The ground-state energy expression is

EB(p) =
〈
Ψ̄(p)

∣∣ Ĥ ∣∣Ψ̄(p)
〉〈

Ψ̄(p)
∣∣Ψ̄(p)

〉 + ĒB[ρΨ̄(p)]. (1)

where ĒB[ρΨ̄(p)] aims to correct the basis error and verifies the relation ĒB[ρ] =
B→CBS

0.

We introduce the intermediate-normalized parametrized wave function∣∣Ψ̄(p)
〉

= |Ψ(p)〉
〈Ψ0|Ψ(p)〉

, (2)

where |Ψ0〉 =
∣∣Ψ(p0)

〉
is the current wave function and its derivatives with respect to p are orthogonal

to |Ψ0〉:
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∂
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∂pI
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The ground-state energy is defined through

EB
0 = min

p∈CM
EB(p). (3)

Using the Newton-Raphson iterative method, optimal parameters p0 are found from[
A B

B∗ A∗

] [
∆p

∆p∗

]
= −

[
g

g∗

]
(4)

where ∆p = p − p0.

In Eq. (4),

gI = ∂EB(p)
∂p∗

I

∣∣∣
p=p0 =
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∣∣ ĤB
eff |Ψ0〉 (5)

AI,J = ∂2EB(p)
∂p∗

I∂pJ

∣∣∣
p=p0 =

〈
Ψ̄I

∣∣ ĤB
eff − EB

0
∣∣Ψ̄J

〉
+ KI,J , (6)

BI,J = ∂2EB(p)
∂p∗

I∂p∗
J

∣∣∣
p=p0 =

〈
Ψ̄IJ

∣∣ ĤB
eff |Ψ0〉 + LI,J , (7)

and

ĤB
eff = Ĥ + V̄ B ; EB

0 = 〈Ψ0| ĤB
eff |Ψ0〉 . (8)

General linear-response equations

We consider the time-dependent Hamiltonian Ĥ(t),
Ĥ(t) = Ĥ + V̂ (t), (9)

with the periodic electric-dipole interaction of frequency ω,

V̂ (t) = −d̂ · ε+e−iωt − d̂ · ε−e+iωt. (10)

To build the linear-response equation, we consider the quasi-energy

QB = 1
T

∫ T

0

[〈
Ψ̄(p(t))

∣∣ Ĥ(t) − i ∂
∂t

∣∣Ψ̄(p(t))
〉〈

Ψ̄(p(t))
∣∣Ψ̄(p(t))

〉 + ĒB
[
ρΨ̄(p(t))

]]
. (11)

From ∆p(t) = p+e−iωt + p−e+iωt, the optimal quasi-energy is defined through

QB
0 = stat

(p+,p−)∈C2M
QB (12)

Excitation energies ωB
n verify the linear-response equations[

A B

B∗ A∗

] [
Xn

Yn

]
= ωB

n

[
S 0
0 −S

] [
Xn

Yn

]
, (13)

where

SI,J =
〈
Ψ̄I

∣∣Ψ̄J
〉
, (14)

and the excited-state energies are obtained by

EB
n = EB

0 + ωB
n . (15)

Linear-response equations for configuration interaction

The CI wave function is expanded on a set of Slater determinants ΦI :

|Ψ(p)〉 =
M∑

I=1
pI |ΦI〉 (16)

The linear-response (Eq. (13)) matrix elements are re-written as

AI,J = 〈ΦI | ĤB
eff − EB

0 |ΦJ〉 + KI,J (17)

BI,J = KI,J (18)

SI,J = δI,J − cIcJ (19)

with the basis-set correction kernel contribution:

KI,J =
∑

i,j,k,l

∆γI
i,j∆γJ

kl f̄B
i,j,k,l (20)

with

γI
i,j = 〈ΦI | Êi,j |Ψ0〉 − cI 〈Ψ0| Êi,j |Ψ0〉 , (21)

where Êi,j = â
†
i↑âj↑ + â

†
i↓âj↓, |Ψ0〉 =

∑M
I=1 cI |ΦI〉, and

f̄B
i,j,k,l =

∫
R3×R3

drdr′ f̄B[ρΨ0](r, r
′)φi(r)φj(r)φk(r′)φl(r′), (22)

where

f̄B[ρΨ0](r, r
′) = ∂2ĒB[ρ]

∂ρ(r)∂ρ(r′)
. (23)

Tests on the 1D model system

2 electrons in a 1D space in a harmonic potential with a delta electron-electron interaction:

Ĥ =
∑

i∈{1,2}

(
−1

2
∂2

∂x2
i

+ 1
2
ω2

0x2
i

)
+ δ(x1 − x2) (24)

FCI with a Hermite-Gaussian basis set

A Local-Density-Approximation (LDA) to correct for incomplete basis-set [3]

ĒB
LDA[ρ] =

∫
dx ρ(x)ε̄B(ρ(x)). (25)

The energy per particle is expressed as a numerical fit,

ε̄B(ρ) '
∑4

i=0 aB
i ρi

1 +
∑4

j=1 bB
j ρj

, (26)

to easily compute the needed derivatives:

v̄B
LDA[ρ](x) = ε̄B(ρ(x)) + ρ(x)d ε̄B(ρ)

dρ

∣∣∣
ρ=ρ(x)

(27)

f̄B
LDA[ρ](x, x′) =

[
2d ε̄B(ρ)
dρ

∣∣∣
ρ=ρ(x)

+ ρ(x)d
2ε̄B(ρ)
dρ2

∣∣∣
ρ=ρ(x)

]
δ(x − x′). (28)

Example on the first excited-state energy of the 1D system:
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7 No improvement of the basis convergence of the excitation energies.

3 Great improvement of the basis convergence of the excited-state energies.

Ongoing : applications on real systems

Improvement of the approximation used for the density functional.

Perturbatively selected configuration interaction state (CIPSI) to build a set of determinants for the

linear response equations.

Implementation of the basis-set correction kernel contribution.

Tests on atomic and molecular systems.

Softwares

A Fortran home-made code for a 1D model system with Hartree-Fock, Full CI and density-based

basis-set correction algorithms for method development.

Quantum Package 2.0 for applications on real systems.
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